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Summary

1.

 

Many species are adversely affected by human activities at large spatial scales and
their conservation requires detailed information on distributions. Intensive ground
surveys cannot keep pace with the rate of land-use change over large areas and new
methods are needed for regional-scale mapping.

 

2.

 

We present predictive models for great bustards in central Spain based on readily
available advanced very high resolution radiometer (AVHRR) satellite imagery combined
with mapped features in the form of geographic information system (GIS) data layers. As
AVHRR imagery is coarse-grained, we used a 12-month time series to improve the defini-
tion of habitat types. The GIS data comprised measures of proximity to features likely to
cause disturbance and a digital terrain model to allow for preference for certain topographies.

 

3.

 

We used logistic regression to model the above data, including an autologistic term
to account for spatial autocorrelation. The results from models were combined using
Bayesian integration, and model performance was assessed using receiver operating
characteristics plots.

 

4.

 

Sites occupied by bustards had significantly lower densities of roads, buildings, railways
and rivers than randomly selected survey points. Bustards also occurred within a narrower
range of elevations and at locations with significantly less variable terrain.

 

5.

 

Logistic regression analysis showed that roads, buildings, rivers and terrain all
contributed significantly to the difference between occupied and random sites. The
Bayesian integrated probability model showed an excellent agreement with the original
census data and predicted suitable areas not presently occupied.

 

6.

 

The great bustard’s distribution is highly fragmented and vacant habitat patches may
occur for a variety of reasons, including the species’ very strong fidelity to traditional sites
through conspecific attraction. This may limit recolonization of previously occupied sites.

 

7.

 

We conclude that AVHRR satellite imagery and GIS data sets have potential to map
distributions at large spatial scales and could be applied to other species. While models
based on imagery alone can provide accurate predictions of bustard habitats at some
spatial scales, terrain and human influence are also significant predictors and are needed
for finer scale modelling.
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Introduction

 

Many wild species are adversely affected by human-
induced changes in land use that operate over very
large spatial scales. For example, in Europe agricultural

policy change and its consequent effects on farming
practice have profoundly influenced many bird species
(O’Connor & Shrubb 1986; Pain & Pienkowski 1997).
Among these is the great bustard 

 

Otis tarda

 

 L

 

.

 

, a globally
threatened species that has suffered dramatic declines
(Collar & Andrew 1988; Heredia, Rose & Painter 1996).
Although the reasons for such declines are not com-
pletely understood, it seems that agriculture intensifica-
tion and habitat fragmentation due to human activities
have played a decisive role. The species’ stronghold is
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now the agricultural landscape of Spain, with an estim-
ated population of 20 000 birds (Alonso & Alonso
1996), more than half  the world total (Hidalgo de
Trucios 1990; Del Hoyo, Elliot & Sargatal 1996). The
population was probably declining until hunting was
outlawed in Spain in 1980 and is now thought to be
stable at best. Its conservation is still threatened by hab-
itat fragmentation over most of the Iberian peninsula.
Recent dispersal studies using individual marking and
radiotracking techniques have shown that although the
species is capable of performing considerable seasonal
migration, individuals display a marked site fidelity to
their breeding areas (Alonso, Morales & Alonso 2000;
Morales 

 

et al

 

. 2000). Once traditional sites are lost, this
behaviour may restrict the potential to establish new
populations elsewhere.

Monitoring national or regional changes in great
bustard distributions and numbers through field surveys
cannot realistically keep pace with the rate of agricultural
and infrastructure development. This is equally true
for large numbers of other species that require assess-
ments of the reasons for population decline. Such know-
ledge is essential for compiling conservation management
action plans under international conventions and
legislation such as the Biodiversity Convention and the
Birds Directive. There is thus an urgent need to develop
ways for mapping threatened species at large spatial
scales with reduced field effort (Gaston & Blackburn
1995; Williams 

 

et al

 

. 1997). In this paper we present the
results from a pilot study that attempted to model the
breeding distribution of great bustards in central Spain
from remotely sensed data and digitally mapped data
layers. Large-scale studies continue to pose major chal-
lenges in applied ecology and model development may
provide ecological insight at scales where manipulation
is not possible (Ormerod, Pienkowski & Watkinson
1999; Caldow & Racey 2000).

Both bustard sexes are highly aggregated in early
spring, when the surveys were conducted (males usually
in a single flock and females in just a few flocks). Until
recently great bustards in Iberia were considered sed-
entary in the vicinity of breeding leks (areas for male
sexual exhibition and copulation). However, work on
radio-marked birds has demonstrated that both sexes
behave as partial migrants between the lek site and post-
breeding or wintering areas (Alonso, Morales & Alonso
2000; Morales 

 

et al

 

. 2000) and generally show strong
interannual fidelity to lek sites in spring. Females nest
close to the lek where they copulate, and take over all
brood caring duties. Thus surveys conducted in spring
are likely to reveal consistent breeding distributions,
but these may differ from wintering sites which are not
addressed here.

Data availability is a constraint in building large-scale
models of species’ distributions, and two basic appro-
aches seem to be emerging to make best use of available
resources. Interpolation methods, ranging from simple
linear interpolation (Farina 1997) to kriging (Palma,
Beja & Rodrigues 1999), estimate species’ occurrences

between sample points based on their spatial arrange-
ment. This is likely to be most successful where habitat
discontinuities are few, but we know of no published
studies that assess model performance. The alternative
approach, which may generally be called correlative
mapping, relates species’ occurrences at points to a suite
of predictor variables that are available across the whole
study area (Osborne & Tigar 1992; Buckland & Elston
1993; Augustin, Mugglestone & Buckland 1996). Derived
equations are then used to predict occurrences across
the species’ range. This is a data-hungry approach
because environmental features are needed for every
grid square or pixel covering the species’ distribution.
However, it is likely to detect more subtle changes in
distributions than interpolation methods, providing
the predictor variables are reasonably correlated with
the habitat features chosen by the species being mapped.
Fortunately, the digital data sets now available reason-
ably approximate some ecological requirements of
the great bustard and probably other species too. Our
emphasis throughout was on the use of readily available
data sets that later would permit scaling-up to the national
or regional scale.

Our starting premise was that vegetation type, terrain
characteristics and human disturbance determine bus-
tard distributions in Spain, factors that may apply equally
to other species. Great bustards favour open, steppe-like,
landscapes comprising cereal–fallow rotations, a habitat
that is particularly under threat of intensification through
irrigation under European Union agricultural policy.
Numerous studies (Lyon 1983; Avery & Haines-Young
1990; Austin 

 

et al

 

. 1996; Lavers, Haines-Young & Avery
1996) have related bird distributions to habitats using
remotely sensed imagery such as LANDSAT thematic
mapper (TM) and multispectral scanner (MSS), but
the high cost precludes their use over extensive areas.
Meteorological satellite data from the advanced very
high resolution radiometer (AVHRR) operated by the
National Oceanic and Atmospheric Administration
are much cheaper and more readily available, but suffer
from coarse spatial resolution (

 

c.

 

 1 km) which may limit
discrimination of land-use types. However, the high
temporal resolution of these data can offer an alternat-
ive route. Several workers (Kremer & Running 1993;
Reed 

 

et al

 

. 1994; Paruelo & Lauenroth 1995) have
utilized time series of AVHRR normalized difference
vegetation indices (NDVI) to map and monitor a range
of habitats. NDVI is calculated from the near infra-red
(NIR) and red (R) spectral bands as NDVI 

 

=

 

 (NIR – R)/
(NIR + R), exploiting the fact that vigorous vegetation
reflects strongly in the NIR and absorbs radiation in
the red band (Mather 1999). Rogers & Williams (1994)
and Rogers 

 

et al

 

. (1997) have taken this approach one
step further by using NDVI to discriminate wildlife
habitats, while others (Walker 

 

et al

 

. 1992; Fjeldsa 

 

et al

 

.
1997) have utilized the same data for identifying and
understanding biogeographic patterns. We used a short
time series of AVHRR data to predict the vegetation
component of great bustard distribution in central Spain.
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Few studies have actually demonstrated a preference
for flat to slightly undulating terrain (although see Alonso
& Alonso 1990; Onrubia 

 

et al

 

. 1998), but it is a com-
monly stated habitat requirement of great bustards
(Johnsgard 1991). The birds probably prefer sites with
good horizontal visibility both to watch for predators
and because the breeding system of dispersed leks
involves strong visual cues over long distances. In our
study region the species is distributed around 11 leks.
Between late winter and early spring, males concentrate
at these traditional arenas where they display and fight
to establish a hierarchical rank. Females also gather at
these arenas to mate between late March and early April.
If  lekking bustards select certain terrain characteristics,
these should be discernible in currently available digital
terrain models (DTM) with resolutions under 100 m.

Evidence for an effect of  human disturbance on
bustards is similarly anecdotal, although it is generally
assumed that the presence of human infrastructures
affects the distribution negatively. However, Lane, Alonso
& Martin (2001) reported the absence of flocks within
a band of about 1 km around villages and busy roads.
For other birds, strong effects of roads on breeding
density and performance have been noted (Reijnen &
Foppen 1994; Reijnen 

 

et al

 

. 1995). Analysis of the effects
of roads and buildings on distributions should be
straightforward with any accurate vector data source.

 

Methods

 

 

 

The pilot study area measured 

 

c.

 

 126 

 

×

 

 132 km, centred
on Madrid province, Spain, with the lower right co-
ordinate at 2

 

°

 

44

 

′ 

 

W, 39

 

°

 

49

 

′ 

 

N (Fig. 1). It was chosen
because accurate great bustard census data, geographic
information system (GIS) data coverages and satellite
imagery were readily available. The area comprised 55·9%
agricultural land, 29·2% natural scrub or wooded cover,
8·2% forestry, 5·6% built environment and the remain-
ing 1·1% bare ground or open water (European Union
Corine Land Cover Project). The majority of analyses

were confined to Madrid province itself  because this
was where bustard censuses were conducted but, where
possible, models were extrapolated to the full study
area (see later).

 

 

 

Digitized infrastructure maps were available from
Autonomous Community of Madrid Cartographic
Service at 1 : 100 000 scale. The data were separated
into four layers (roads, buildings, railways and river
systems) using ArcView software (ESRI 1996) and then
rasterized to 80-m pixels in Idrisi (Eastman 1995). This
resolution was chosen because a digital terrain model
(DTM) was also available at this scale for the province.
We created new variables from each of the infrastruc-
ture layers by replacing the central pixel of a 13 

 

×

 

 13-cell
moving window with the proportion of pixels recording
the feature of interest (Table 1). This is equivalent to
calculating the percentage land cover of the feature at
80-m resolution within a 

 

c.

 

 1-km

 

2

 

 quadrat.
The DTM was used to derive the altitude of each pixel

and to calculate terrain variability as bustards appear
to choose open, gently undulating, landscapes. Using
moving windows of 5 

 

×

 

 5, 9 

 

×

 

 9 and 13 

 

×

 

 13 pixels we
calculated the coefficient of variation (CV) in altitude
and placed this value in the central pixel. The three
window sizes were selected to examine the effect of scale
on terrain variability.

 

 

 

A range of cloud-free AVHRR images at 1·1-km reso-
lution was obtained for each month during 1996 to
calculate the temporal NDVI signature for each pixel.
Several factors can affect the reliability of NDVI values
extracted from these data: changing illumination and
viewing conditions within a single image and between
images on different days; the presence of cloud cover;
variations in atmospheric constituents such as water
vapour and aerosols (Marçal & Wright 1997). The use
of maximum value composites (MVC) is a means of
partial correction of AVHRR data for the effects of these
different factors (Holben 1986). Given a large number
of images throughout a year, the assumption behind
this approach is that the maximum NDVI values of the
image set will correspond to ideal conditions, i.e. low
solar zenith and viewing angle, low water vapour and
aerosol concentrations and cloud-free conditions (Marçal
& Wright 1997). However, for time series generated
over large spatial areas, the MVC approach can have
some limitations, as variations resulting from off-nadir
viewing geometry cannot always be accommodated or
corrected (Stoms, Bueno & Davis 1997). For this study,
which concentrated on a relatively small study area,
viewing geometries for MVC data were assumed to be
near-nadir. NDVI values were therefore calculated for
each image and used to form a MVC time series from
the best cloud-free images from each month.

Fig. 1. Approximate location of the study site (boxed area)
measuring 126 × 132 km in central Spain, centred on Madrid
province.
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A complete great bustard census was conducted in
March 1997 for the whole of Madrid province. The dis-
tribution of the species in the study area was known
from previous censuses (Alonso & Alonso 1990, 1996).
During 1 week three teams each of two experienced
observers counted bustard flocks at the known breeding
areas and also searched all other potential sites. In
practice, birds sighted just beyond the province boundary
were also recorded. One-hundred and three flocks (960
birds) were first marked on field maps, then digitized
and the point coverage rasterized to 80-m and 1·1-km
resolutions, recording the presence of bustards in the
pixel. This resulted in 71 pixels with one or more flocks
at 1·1-km resolution, and 92 pixels at 80-m resolution.
For comparison, we generated equivalent random point
coverages, stratifying them geographically both to sample
the whole province and to reduce spatial autocorrela-
tion (i.e. to reduce the probability of  using adjacent
pixels). The number of random points selected is im-
portant because prevalence (i.e. the ratio of positive to
negative pixels) affects the outcome of model perform-
ance testing in logistic regression as used here (Fielding
& Bell 1997; Manel 

 

et al

 

. 1999).

 



 

Analyses were based on the comparison of landscape
features at the random points and at the locations used
by bustards. In grid-cell mapped data the appropriate
test to use depends on the spatial autocorrelation in
the sampling points because this in effect reduces the
degrees of freedom and thus increases the chance of
type I errors (Cliff  & Ord 1981; Legendre & Legendre
1998). We assessed spatial autocorrelation using Moran’s
I and then for univariate analyses followed the advice

of  Cliff  & Ord (1981) for modifying 

 

t

 

-tests based on
the results.

Multivariate analyses were carried out using forward
stepwise logistic regression (SPSS 1997) to contrast pixels
used by bustards with the random set. Analyses were
carried out separately on the GIS data at 80-m resolution
and the AVHRR imagery at 1·1-km resolution (Table 1).
For the latter, models included the 12-monthly NDVI
values and two NDVI contrasts (April minus July, and
April minus January) derived empirically by inspection
of mean NDVI temporal signatures (Fig. 2). We also
included quadratic terms for the predictor variables to
allow for the possibility of optimum vegetation condi-
tions being selected by the birds (quadratic terms within
logistic regression model Gaussian responses).

As in univariate analysis, spatial autocorrelation affects
significance tests on logistic regression coefficients and,
as no satisfactory method exists at present to correct for
this, caution is needed in their interpretation. Conven-
tional statistical modelling on spatial data ignores spatial
autocorrelation in the residuals due to the ecological
likelihood that neighbouring pixels will have dependent
probabilities of use. To overcome this, we adopted the
approach of Augustin, Mugglestone & Buckland (1996)
by incorporating an autologistic term in the models
based on the modified Gibbs sampler. A probability
surface was first generated by logistic regression in the
usual way. Then a moving window of 9 

 

×

 

 9 pixels was
used to calculate the mean of the probabilities assigned
to the 80 neighbouring cells, weighted by Euclidean dis-
tance. This autologistic term was entered into the regres-
sion and the model rerun. The procedure is iterated to
stability to produce the final probability surface (for
further explanation see Augustin, Mugglestone & Buck-
land 1996). In image-processing terms, the autologistic
term acts as a smoothing filter, removing isolated pixels
and consolidating habitat patches defined as suitable.

Table 1. Predictor variables used to compare pixels occupied by bustards with random locations

Variable Definition

GIS layers
Roads Proportion of 80-m pixels in a 13 × 13-array containing roads. Equivalent to the density of 

roads at 1·1-km resolution
Buildings Proportion of 80-m pixels in a 13 × 13-array containing buildings or large built structures 

such as airfields
Railways Proportion of 80-m pixels in a 13 × 13-array containing railway tracks
Rivers Proportion of 80-m pixels in a 13 × 13-array containing rivers
Altitude The altitude in m recorded on the 80-m digital terrain model
Terrain variability 25 Coefficient of variation in altitude in a 5 × 5-pixel array of 80-m pixels. Measures variation in 

altitude at 0·16-km2 resolution
Terrain variability 81 Coefficient of variation in altitude in a 9 × 9-pixel array of 80-m pixels. Measures variation in 

altitude at 0·52-km2 resolution
Terrain variability 169 Coefficient of variation in altitude in a 13 × 13-pixel array of 80-m pixels. Measures variation in 

altitude at 1·1-km2 resolution
Slope % slope. The maximum of either the north–south or east–west slopes across a 3 × 3-pixel array

Satellite imagery
NDVI (month) The value of the normalized difference vegetation index for each month based on a maximum 

value composite of AVHRR imagery at 1·1-km2 resolution. Scaled 0–255
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Results of logistic regression models are often judged
as successful if predicted probabilities > 0·5 correspond
with observed occurrences and values < 0·5 with absences.
However, this dichotomy is arbitrary and lacks any
ecological basis; patches rated with a 0·6 probability of
occurrence may in fact be unsuitable. The more powerful
approach used here is to assess model success across
the full range of dichotomies using receiver operating
characteristics (ROC) plots. ROC plots are widely used
in clinical chemistry (Beck & Shultz 1986; Zweig &
Campbell 1993) but rarely by ecologists (Fielding &
Bell 1997). A ROC plot depicts on the 

 

y

 

-axis sensitivity,
i.e. 

 

a

 

/(

 

a

 

 + 

 

c

 

) in a 2 

 

×

 

 2 confusion matrix of the model
prediction against the observations. This is plotted
against 1 – specificity, i.e. 1 – (

 

d

 

/(

 

b

 

 + 

 

d

 

) ) from the same
confusion matrix. The chance performance of a model
lies on the positive diagonal of a ROC plot, whereas
models that out-perform chance follow a curve lying
in the upper left half. The area under the ROC curve
(AUC) is a convenient measure of overall fit and varies
from 0·5 (for a chance performance) to 1·0 for a perfect
fit. We generated ROC plots using SPSS software and
calculated the AUC and its standard error using a non-
parametric approach. The results are reported here as
the AUC 

 

±

 

 its standard error together with the signific-
ance of a test that the area 

 

=

 

 0·5, i.e. that the model
results do not differ from chance.

The probability surfaces derived from the two inde-
pendent logistic regression models were combined using
Bayesian inference after first resampling the 1·1-km
surface to 80-m resolution. The technique permits prior
probabilities (for example derived from one model) to
be revised on the basis of new probabilities calculated
from a second model. The appropriate formula (from
Pereira & Itami 1991) is:

combined probability 

 

=

 

 
1/1 + exp[ log(1  –  

 

P

 

NDVI

 

/

 

P

 

NDVI

 

) –  log(

 

P

 

GIS

 

/1  –  

 

P

 

GIS

 

) ]

where 

 

P

 

NDVI

 

 is the probability derived from the NDVI
model, and 

 

P

 

GIS

 

 is the probability derived from the

model based on GIS data layers. Bayesian approaches
to decision-making have previously been used as here
by Pereira & Itami (1991), and in other ways in wildlife
distribution modelling by Aspinall & Veitch (1993) and
Tucker 

 

et al

 

. (1997).

 

Results

 

 

 

At 80-m resolution, neither the bustard locations nor
the random points exhibited significant spatial autocor-
relation (Moran’s I < 

 

−

 

0·0001 in both cases). Following
Cliff & Ord (1981) we therefore compared site character-
istics using standard 

 

t

 

-tests adjusted for unequal variance.
Sites occupied by bustards had significantly lower

densities of roads, buildings, railways and rivers than
random points (Table 2). Of these, the effect of buildings
was particularly strong; bustards occurred at sites with
a mean of only 0·8% land cover by buildings, whereas
random sites averaged 10·5% (

 

P 

 

< 0·001). Table 2 gives
the ranges for each variable within which bustards
occurred and these are combined as a threshold mask
in Fig. 3a. This clearly shows the elimination of the radi-
ating network of roads and buildings from Madrid City.

Bustards occurred within a narrow range of elevations
from 566 to 780 m a.s.l., whereas random points covered
the range 520–2194 m a.s.l. The terrain surrounding
bustard sites was also significantly less variable than
that around random sites at all three scales examined
(Table 2). There was no obvious trend for a difference
between the scales, although the significance of the dif-
ference between bustard and random sites increased
within window size. Using 13 

 

×

 

 13 cells (about 1 km

 

2

 

),
bustards occurred at sites with up to 2·8% coefficient of
variation in altitude (mean 1·2%), whereas random
sites had up to 5·9% variability (mean 2·0%). Combin-
ing the results for altitude and terrain variability with
the mask in Fig. 3a yields Fig. 3b. This indicates that
only 2133 km

 

2

 

 of the 6540 km

 

2

 

 (32·6%) studied meets
the characteristics of infrastructure, elevation and river

Fig. 2. Monthly means and standard errors along the temporal NDVI signatures for sites with great bustards (solid line) and
those without (dashed line). Months are January = 1 to December = 12. n = 71 for both curves.
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networks at sites used by bustards. Furthermore, this
area is fragmented into blocks by the radiating networks
from Madrid City.

 

     


 

Building threshold masks (e.g. Fig. 3) is a convenient
way to define areas meeting criteria but suffers from
failing to take into account interactions between
variables. Using the GIS variables in Table 2 (selecting
terrain variability 169 for variation in elevation), we built
predictive models for bustard presence using forward

stepwise logistic regression. Only railways and slope
were not included in the model (at 

 

P 

 

< 0·05) and all
other variables were significant at 

 

P 

 

< 0·01 (Table 3).
The greatest contributions came from terrain variability
(

 

P 

 

< 0·0001) and housing density (

 

P 

 

< 0·0002). Over-
all the ROC plot for the model (Fig. 4a) had an AUC of
0·898 

 

±

 

 0·023 and was highly significant (

 

P 

 

< 0·001). A
simplified probability surface for bustard occurrence
based on the significant GIS variables is shown in
Fig. 5. There are obvious similarities with Fig. 3b but
the probability plot shows far more texture and greater
weighting in the east-central and extreme south-west
parts of the province.

Table 2. Comparison of features around 92 sites occupied by great bustards and 93 random points (except for terrain variability
and slope based on 83 and 87 sites, respectively, to eliminate edge effects). Values are means ± standard deviations and all t-tests
are adjusted for significant unequal variance

Variable Bustard sites Random points Adjusted t-test Range used by bustards

Roads 0·022 ± 0·045 0·043 ± 0·080 2·28*  0–16·0%
Buildings 0·008 ± 0·026 0·105 ± 0·216 4·32***  0–18·3%
Railways 0·006 ± 0·022 0·018 ± 0·052 2·02*  0–11·2%
Rivers 0·028 ± 0·044 0·053 ± 0·066 3·11**  0–16·6%
Altitude 673·9 ± 56·9 799·7 ± 285·4 4·17***  566–780 m
Terrain variability 25 0·540 ± 0·413 0·949 ± 0·814 4·16***  0–1·50%
Terrain variability 81 0·871 ± 0·555 1·518 ± 1·027 5·15***  0–2·37%
Terrain variability 169 1·153 ± 0·649 1·996 ± 1·270 5·48*** 0·03–2·81%
Slope 3·08 ± 3·05 6·60 ± 7·92 3·85***  0–12·9%

 

Fig. 3.

 

Threshold masks for areas suitable for bustards (in black) based on (a) constraints of roads, buildings, railways and rivers, and (b) with the addition
of altitude and terrain variability.
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We built a separate model based on the satellite data
at 1·1-km resolution. The stepwise inclusion of the
explanatory variables resulted in the selection of three
NDVI variables for January, November and the con-
trast April minus July (Table 3). None of the quadratic
terms was significant. The model ROC plot (Fig. 4b)
had an AUC of 0·93 

 

±

 

 0·022 and was highly significant
(

 

P 

 

< 0·001). The resultant probability surface is shown
in Fig. 6. Although this model of habitat suitability was
derived by analysing only the presence or absence of
bustards, the probabilities also relate to the numbers
of birds present (Fig. 7). Most points lie beneath the
diagonal from bottom left to top right, indicating that
large numbers of birds only occur in pixels with high
predicted probabilities.

We took account of autocorrelation in the model
based on the satellite data by including an autologistic
term; the regression coefficients stabilized within five
iterations to produce Fig. 8. Comparing this with Fig. 7
reveals the down weighting of isolated pixels previously
defined as suitable, and the consolidation of the larger
suitable habitat blocks. The ROC plot for the autolo-
gistic model (Fig. 4c) differed very little from the standard
NDVI model (AUC 

 

=

 

 0·93 

 

±

 

 0·022, 

 

P 

 

< 0·001). The
1·1-km

 

2

 

 resolution probability surface in Fig. 8 was
resampled to 80-m resolution in order to combine it with
the thresholds imposed by infrastructure and natural
features (i.e. Fig. 3). Taking an arbitrary lower threshold
of 50% probability of occurrence from the habitat suit-
ability map (Fig. 8) alone yielded an area of 972 km

 

2

 

 or

Table 3. Summary results of the logistic regression analyses. The significance of the coefficients was assessed using the Wald
statistic

Model Predictor variable Coefficient Standard error

GIS data layers (80-m resolution) Roads –10·97** 3·78
Buildings –26·90*** 7·13
Rivers –9·86** 3·74
Altitude –0·009*** 0·003
Terrain variability 169 –1·14*** 0·29
(Constant) 9·25*** 2·08

NDVI data (1·1-km resolution) NDVI (January) 0·12* 0·05
NDVI (November) –0·31*** 0·08
NDVI (April) – NDVI (July) 0·08** 0·03
(Constant)   23·26** 8·92

Fig. 4. ROC plots for (a) logistic regression model with five GIS variables, (b) logistic regression model based on NDVI,
(c) autologistic regression model based on NDVI, and (d) Bayesian integrated model incorporating both the GIS variables and
the autologistic NDVI model.
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Fig. 5. Simplified probability surface for the occurrence of great bustards based on logistic regression analysis of five GIS variables.

Fig. 6. Simplified probability surface for the occurrence of great bustards based on logistic regression analysis of temporal NDVI signatures.
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14·9% of the province. This provides an estimate of the
area of the province with vegetation index signatures
comparable to those used by bustards. When combined
with Fig. 3b, however, this falls to 570 km2 or 8·7% of
the province (Fig. 9). The difference between these two
values (400 km2) is the amount of apparently suitable
habitat that bustards are unlikely to use due to proximity
to unfavourable landscape elements. Figure 9 (area
570 km2) is the area of  Madrid province that cannot be
distinguished from sites occupied by bustards using GIS
and remote sensing, based on simple threshold mapping.

An alternative approach is to combine the two prob-
ability surfaces based on feature data (Fig. 5) and NDVI
(Fig. 8) using Bayesian integration (see the Methods).
As Fig. 5 represents largely fixed features of the land-
scape today, we regarded these as prior probabilities
that may be refined by consideration of Fig. 8 which
represents land cover based on green biomass. The
Bayesian integrated probability model (Fig. 10) showed
an excellent agreement with the original census data
(simplified in Fig. 11 for ease of display) and had an
ROC AUC value of 0·969 ± 0·013, P < 0·001 (Fig. 4d).

Discussion

We started with a premise gleaned from the literature
that great bustard distributions may be related to
vegetation, topography and human influence, and
sought digital data sets that could characterize these
features. At the landscape scale, our analyses success-
fully predicted the occurrence of bustards around
Madrid province and all these features were significant
predictors.

The negative effect of human disturbance on bustard
occurrence is not surprising but is interesting because
at first sight it appears that the birds are well integrated
into the urban setting in Madrid province. There is
growing evidence that roads impact on large mammals

Fig. 7. Relationship between the predicted probability of
occurrence generated by logistic regression analysis of
presence–absence data and the number of bustards recorded.

Fig. 8. Simplified probability surface for the occurrence of great bustards based on autologistic regression analysis of temporal
NDVI signatures. Note how in comparison with Fig. 6 the image shows better definition of core areas.
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Fig. 9. Threshold map for the occurrence of great bustards based on the limits from Fig. 3b and habitat suitability > 0·5 from
Fig. 7. Defined in this way, 8·7% of the province could be used by great bustards.

Fig. 10. Bayesian integrated probability map for the occurrence of great bustards in central Spain.
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(Mech 1989; Mladdenoff et al. 1995; Mace et al. 1996;
Palma, Beja & Rodrigues 1999) and birds (Reijnen &
Foppen 1994; Reijnen et al. 1995) and this is important
in the context of environmental impact analysis (Hill
et al. 1997). The negative effect of buildings was even
stronger and independent of the impact of roads in our
multiple logistic regression analyses. A similar analysis
on grey geese (Anser anser and A. brachyrhynchus) in
Scotland found the same result (C. Urquhart & P.E.
Osborne, unpublished data) and it may be important
that future studies consider the possible effects of roads
and housing independently.

We do not believe that the negative impact of rivers
and their tributaries demonstrates an actual avoidance
of  these features but rather that irrigated crops are
frequent along watercourses and these are avoided.
Bustards occupied only a part of the altitude range
available and, more significantly, occurred at sites where
the surrounding terrain was less variable than at ran-
dom sites. This accords with their assumed preference
for relatively open terrain. Our analysis with three
window sizes (400 m to 1 km) did not detect the point
where terrain variability at bustard and random sites

became the same, although logically with a large enough
window this would be true. This suggests an avenue
for further research; indeed, finding the scales at which
impacts of  impaired visibility and disturbance are
greatest would provide valuable data for conservation.

As Fig. 2 illustrates, there was a marked difference
between the mean NDVI signatures for sites used by
bustards and those that were not. Although AVHRR
data are relatively coarse-grained, the use of temporal
signatures provided enough resolution to discriminate
occupied and unoccupied sites and indicates the poten-
tial of using NDVI time series to predict avian habitats.
We believe that our model largely detected the sharp
change in NDVI brought about by rapid crop growth in
cereal fields in spring followed by biomass loss through
harvesting in July. However, based on local knowledge,
it appears that the model is not simply predicting all
cereal areas, because some large areas were excluded.
How the subset of more suitable fields is recognized is less
clear. Maurer (1994) has previously shown a relationship
between avian abundance and NDVI, but the correlation
of abundance with probabilities of occurrence generated
by temporal NDVI curves is new. The relationship here

Fig. 11. Predicted probabilities of occurrence > 0·7 from the Bayesian integrated model overlaid with the recorded locations of
great bustard flocks. Note that flocks observed beyond the province boundary are adjacent to areas predicted to be highly suitable
for bustards.
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indicates that sites defined as suitable have the potential
to hold most birds, although they do not necessarily do
so. Conversely, sites defined as unsuitable appear capable
of holding only few birds.

Despite the coarse-grained nature of AVHRR data,
models based on NDVI alone do provide significant
predictions of bustard occurrence. In some situations,
remotely sensed data may be all that are available and
our results indicate that they are a useful first step in
model building. However, we conclude that while models
based on vegetation alone can provide accurate predic-
tions of bustard habitats at some spatial scales, terrain and
human influence are also significant predictors and are
needed for finer scale modelling. For example, the breed-
ing site in the centre of the south-east part of the province
(Fig. 11) was not predicted by the NDVI probability
surface (Fig. 8) but appeared after integration with the
landscape GIS variables. We thus concur with Manel
et al. (1999) that prediction success in distribution models
may be enhanced when local data are available, despite
the apparent success of coarse-grained models.

The use of an autologistic term based on a modified
Gibbs sampler (Augustin, Mugglestone & Buckland
1996) in the logistic regression models proved very
effective in sharpening the definition between occupied
and unoccupied patches. Although similar visual effects
can be achieved more simply in image processing
through Gaussian or median filters, they lack an eco-
logical basis, whereas the Gibbs sampler uses informa-
tion on the proximity of occupied pixels. We chose to
consider neighbours within 4·4 km of the target pixel
(i.e. a 9 × 9 window at 1·1-km resolution) because this
seemed an appropriate scale for breeding great bustards,
comparable with the average area of influence of a lek.
Augustin, Mugglestone & Buckland (1996) tried a range
of window sizes to 4 km distance for red deer Cervus
elaphus but found that 3 km gave optimum results in
terms of the balance between model accuracy and com-
putation time. Further work is needed on the selection
of optimum neighbourhood distances for a range of
species when trying to account for spatial autocorrela-
tion in distribution models.

Generally, the prediction of occupied sites was more
successful than the prediction of absences. For example,
the Bayesian integrated model (Fig. 10) correctly pre-
dicted 93·0% of occupied sites and 78·9% of unoccupied
sites, based on a 50% probability dichotomy. This is the
opposite result to that reported by Manel et al. (1999)
for six bird species and reinforces their view that more
work is needed on model performance indicators and
their determinants. Differences in performance at
predicting presence and absence may be due to a num-
ber of factors (Fielding & Bell 1997) but we offer the
following ecological explanations. First, the bustard
census data were a single-day snapshot of occurrences,
taken when flocking was at its maximum at lek sites.
Under these conditions, adjacent areas could be mis-
takenly regarded as unsuitable whereas with greater
flock dispersion they would be occupied. Secondly, the

Spanish great bustard population is fragmented into
numerous habitat patches and, due to high site fidelity
(Alonso et al. 1995), movement between patches for
breeding may be scarce. Tilman, Lehman & Kareiva
(1997) predict that these conditions will lead to the non-
occupancy of some suitable sites even at population
equilibrium. Thus we might expect some unoccupied
sites to be ecologically inseparable from occupied sites.
Thirdly, recent field studies by Lane, Alonso & Martin
(2001) could not discriminate occupied from unoccu-
pied but apparently suitable areas for bustards in central
Spain, and it is unreasonable to expect large-scale models
to outperform intensive field investigations. Their study
compared 13 areas occupied by great bustards with a
matched set of 12 unoccupied areas nearby. These sites
could not be distinguished using discriminant analysis
on a set of variables defining relevant habitat charac-
teristics such as crop type, substrate heterogeneity, field
size, presence of roads, villages and powerlines. Both
their study and ours indicate that not all potentially
suitable areas are occupied and that great bustards show
fidelity to sites regardless of the availability of suitable
habitat elsewhere. We believe that this may be due to a
combination of a series of local extinction processes in
recent decades due to human-induced habitat deterio-
ration and hunting, and the very low re-colonization
capability of the species which arises from its complicated
lek breeding system. Settlement patterns are probably
determined by the presence of conspecifics rather than
habitat cues (J.C. Alonso, unpublished data). This means
that conservation efforts must be directed towards
protecting traditional lek sites, and that once a lek is
extinct the site will probably remain empty in the future.

The limited number of  historically documented
extinctions (e.g. the small patch predicted as suitable
west of Madrid city was occupied 20 years ago; Figs 10
and 11) and circumstantial evidence (e.g. place names
in the larger area with high probability of occurrence
south of the city) suggest that Fig. 11 shows the likely
distribution of great bustards some 20–40 years ago.
Since then many of the predicted areas have become
vacant due to local extinction processes. It is also impor-
tant to remember that the locations in Fig. 11 were based
on breeding birds and that these perform seasonal
movements and expand the occupied area throughout
the year. Conservation based on breeding sites alone
would almost certainly be ineffective, and a landscape-
scale approach incorporating seasonal changes in
locations is required.

Our study was preliminary in developing methods
for landscape-scale models but the intention is to
examine distributions at the national scale. We envisage
two major challenges in relation to scaling-up to larger
study areas. First, as mentioned earlier, the selection of
maximum value NDVI data may not lead to adequate
standardization over large areas due to a level-of-view
and solar-angle bias. In practice, this means that a
given surface may generate a different NDVI–MVC
score at different locations on the image. The main
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factor causing this is the inherent variability of surfaces
at different look angles. A traditional solution to this
problem is to first standardize images against a com-
mon target such as a large body of water or bare ground
(Sannier et al. 1998). A better approach, however, may
be to take into account the bidirectional reflectance
distribution function (BRDF) of the surfaces being
sensed (Cihlar, Manak & Voisin 1994). Correction for
these effects can be undertaken using linear semi-
empirical kernel-driven models (Roujean, Leroy &
Deschamps 1992) that adjust image data for BRDF
variability and extract surface information. Initial results
indicate that the new models provide enormous scope
for improving data quality and also provide useful
additional information (Chopping 1998).

The second challenge to scaling-up is that animals may
not choose habitats according to absolute needs but may
adopt a comparative approach. Particularly on the edge
of a species’ range, occupied sites are likely to be far from
the ideal habitat with poorer breeding performance to
match (Lawton et al. 1994). Also, several habitat types with
different spectral signatures may be equally suitable at large
geographical scales. Large-scale models must therefore
include samples from across the species’ range and ana-
lysis may be better partitioned spatially prior to modelling.
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